ON THE NONSTATIONARY MOTION OF A WING
WITH RECTANGULAR PLANFORM

(0 NEUSTANOVIVSHEMSIA DVIZHINII KR’ ILA
PRYAMOUGOL’ NOY FORMY V PLANE)

PMM Vol.23, No.6, 1959, pp. 1030-1041

V.A. KOVALEVA
(Dniepropetrovsk)

(Received 18 August 1959)

We demonstrate some results in the investigation of the unsteady motion
of a thin rigid wing of finite aspect ratio and rectangular planform in
supersonic flow of arbitrary velocity variation; this includes passage
through a gust or a shock front. The problem is linearized., In the first
part of the paper one finds the solution of the problem for the case of
a change in wing angle of attack according to the law ¢®!i(—o < t < 0);
in the second part, the obtained particular solution is used to examine
cases where the angle of attack of the wing changes arbitrarily with time.
Problems of this sort were examined by Krassitshchikova [ 1 ]. In the pre-
sent paper, a closed form solution is obtained for the case of a wing of
rectangular planform with account of edge effects.

1. We shall consider the straight-line forward motion of a thin, rigid
wing of finite span and rectangular planform, moving in an infinite region
of fluid and at rest at infinity. Superimposed on this basic motion, with
constant supersonic velocity U, are additional small nonstationary motions.

We shall investigate the perturbed motion in a moving system of co-
ordinates fixed to the wing and moving with the velocity U. The x-axis is
in the direction opposite to the motion, the y-axis is in the spanwise
direction, and the z-axis is upward (see figure).

z We shall assume that the nonstationary motion of
f the wing produces small disturbances in the flow and
Z  that the perturbed flow has a potential. Then, as is
known, the perturbation velocity potential ¢{x, y, z,t)
v satisfies a linear differential equation which, in the
moving system of coordinates, has the form:

e | ¢ % 1 (8% 0% 0% )

x? ' 0y? 9z% T u® \are +2U U, ox® (t.1)

dxdt
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Motion of a wing with rectangular planform 1477

where a = v/ (dp/dp) is the speed of sound in the undisturbed fluid.

The field is disturbed in that part of the field which is bounded by
the envelope of Mach cones with vertices on the wing contour. Outside
this region the velocity potential and its derivatives are equal to zero:

$=0 (1.2)

On the wing surface L the boundary condition is satisfied:
ai"zf(t) for z =10 (1.3)

where f(t) is an arbitrary function of its argument which is given on the
semi-infinite interval (~o, 0), with a finite number of points of dis-
continuity of first order, and sufficiently smooth at —e.

Everywhere in the x, y plane where the fluid is disturbed, but outside
the plane of the wing and the vortex sheet,

=0 (1.4)

The potential ¢ is an odd function with respect to the z-coordinate,
oz, y, -z, t) = ¢lx, y, z, t); therefore the solution of the problem need
be investigated in only the upper hal f-region.

Thus, it is necessary to determine a function ¢(x, y, z, t) which
satisfies equation (1.1), conditions (1.2), (1.3), (1.4) and is equal to
zero at infinity, together with its derivatives.

The pressure on the wing is determined from the equation

- dp(z, ¥, 0, ¢ de(z, ¥, 0, 1)
P,y 0, 0)=p —p =2p [ 20D Ly le@m 0 D] (15
2. We shall find a particular solution of equation (1.1) for the case
where the velocity component normal to the wing changes with time accord-
ing to the relation

a
[qug'l — eat (— oo <EKO0, a>0) (2.1)

42=0

Letting M = U/a denote the Mach number of the basic flow, we rewrite
equation (1.1) in the following form:

A o | % , % M &%
—(M2~—1)81‘2+W+-‘3—32—_———2_——=0 (2.2)

We shall look for a perturbation velocity potential ¢(x, y, z, t)
which is a solution of equation (2.1), in the form

¢z, y, 2, t) = et (z, y, 2) (2.3)
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For the function t/(x, y, z) we obtain the equation

ey oy o 2
—r—ty gt e [ —np—2m 2] %,
2 .
[——(11/12—1)[12—2M%p——:2—]¢=0 (2.4)
Making use of the arbitrary 3, we require that
a M
—2(M—1)B—2M 2 =0, or B=— = .2 (2.5)
Equation (2.4) is transformed to
o | By 9% a? 1
=1 (5 + ) — 5 T = (=) (26)
Making the usual change of variables,
=i, y=NVM—1 gz =MVM—1 (2.7)

equation (2.6) takes the form

5 2 -
ayfz g 4)2 3 \U +¢ =0 (2.8)

On the basis of (1.2), (1.3) and (1.4) we obtain the following conditions
for ¢(x1, Yy zl):

in the undisturbed field, the function ¢/ and its derivatives are zero:

$=0 (2.9)
on the wing surface L,
oy _ ! —x, - =B
= = € for 2z; =0 (v_ 7\) (2.10)

in the plane zq; = 0, ocutside the plane of the wing and the vortex
sheet,

g=0 (2.11)

Let us consider an auxiliary problem. Let ¢’“(x1, Yy zl) satisfy the
equation

624,. 624". 624).

oy 2 92,2 - 97,2 =0 (212)
and the conditions
a *
61)1 - fl (xl) on L; for z;=0 (213)

and conditions analogous to (2.9) and (2.11) outside L.
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To investigate this auxiliary problem, we shall start from the ex-
pression for a function (ﬁo*(xl, Yy zl) which, like the function t//*(xl,
¥y» 2,) satisfies the differential equation (2.12) and conditions ana-
logous to (2.9) and (2.11) outside L,; however, the condition (2.13) on
L, for z; = 0 will be

oot
B (2.14)

The expression for the function y,*(x,, y,, 7’1) was given by Busemann
[2]. The value of its derivative with respect to x,, for z, = 0, 1is

[8%* (%1, y1, 51) ] _ {" n~tarc cos (1 — 2yy/21) for 2 >y (2.15

0z, 2,=0 —1 for o; <y 15)

A relation has been established between the functions v, *(x,, y;, z,)
and l//*(xl, Yqir Zl) [{3t.

A
* oy* - ’ s Mo* y R -
(4) Z1, Y, Zl) — % [ {* [(z; aill) Y1 Zx]]zx:a do (Elagfh z1) dq1 _
Ay

A
a *
= | 71— B 2 gy
Ay

for an arbitrary point A(x,, y,, z,;) of the disturbed region; here the
point A lies on the envelope of Mach cones.
For points on the wing,

Xy

* _ aq). [(xl - El)t Y1, 2 ] 64)0‘ (El’ Y1, zl) .
CP (xl’ Y, O) - S [ 05 : ]11=0[ 9%, ]2x=0dgl -
0o

= S fule —b) [He G e 2] g, 2.16)

The expressions (2.16) make it possible to find a connection between the
functions ¢¥*(x,, y,, z,) and ¢lx,, y,, z,) in the plane z, = 0, using
operational methods. Let

t

o0
F(p, ., %)= p% p'W'xc[) (g, Y1, 21)dx;
0

oo
F*(p, g1, 2) = p\ €74 (a1, 11, 21) doy (2.17)
0

be the transforms of the functions g//(xl, Yi» z,) and W (xy, ¥y zl).

The functions F(p, y,, z,) and F*(p, y,, z,) satisfy the partial diffe-
rential equations
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o2F o2F* "
+ s —(P—DF=0, o4 —pF =0 (218

Evidently it is possible to write the following relation between

F(p, y,, z;) and F*(p, y,, zi): 219

F(y1, 21, P) = F' (g, 2, VPZ“‘“, F@, 0, pp=F(y1, 0, VP2_1)

We shall use the expression (2.16) for the function ¢*(x,, y,, 0):

X1

4 (2 o 0) — S [aq» (@ — &), y1, 2l ]ZO[ 00 (Exy 91,71) Jz,zo "

0zy 9%,
0

we define

T'(p, y, O)=p

8

e Px1 [aq)o' (z1, %, %) ] dx]
6:131 23=0

(2.20)

[8F‘ (P, ¥, 21)4

- a‘{»" (xly Y1, Z])
= PXy | L 2 Sl YT 3
027y ]a=0 pye [ ]n:odll

0z

OQ/DS <

From the inversion theorem, we obtain for F*(yl, 0, p):
* . 1 6F. (ylv Zy, P)
P, 0, p) =5 [Tt D) T (g 0, p)

Making use of (2.19) it is possible to obtain an expression for F(y,,
0, p), namely

F(y, O, p)=F'(y, 0, VpP—1) =

1 OF* (y1, 21, sz —1) ——e
= l/pz 1 [ 8z, - T (ylv 0’ sz - 1)

From (2.19)

oF* (ylv Z1, sz_i) :i — [ oF (ylv 2y, P) :‘
0z, 2,0 0z, 2,=0

Therefore

1 OF (y1, 21, p) —_
F(p, 1, 8) :VPT:i[ — Jomo T (s 0,V pi—1

6Z1 2y

Due to (2.10), [l 2 ] =

L 03, ,zoz)\VMz-—ip—{—v
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and thus the expression for representing the required function \/l(xl,yl,O)
finally has the following form:

£t 1 P P
Fp. 9y 0= 3731, st vVt L ¥V PP—1 5. 0 (220

The function ¥{x,, y;, 0) can be constructed by proceeding from the
relation (4)

t
V.P.zﬂ_ O P —1) >/ +\ [V E=PHL()ds (2-22)

—1

1
Here I,(r) is the first order Bessel function of imaginary argument.

Using the inversion theorem and relation (2.22), we obtain for ¢(x,
¥1s 0) the following:

X1
N

1 { 9 z l a * ) ?
‘P(Il’ ylv O) — }\V § e—v(al—ﬂ) ][ % (El Y1 zl) }Zl=0+

ME—1 9,

- S [ o (V &2 gzj«z‘l. Y1, 1) L,:O I, (&) dEQ} dg, (2.23)

0

Introducing a new variable o, = v/ (flz - fzz) and applying the well
known relation dIO(z)/dz = 11(23 to the function Il\/(rfl2 - 012), we
write the inner integral in (2,23) in the form

1

e R [ e I

Zy5=H) (151

(=X I ¥

Then we obtain for g’/(xl, Yi» 0) the form

Xy

$ @1, Y1, 0) = N S e_V(XPﬂ){[%ML.:O o

AV ME—1 ]
N 9o* ( ) d S
_S [o_i%éih_zl]zo e Lo (VEE—a)] dcl} dz, (2.24)
Here 0
Oo* (B, y1, 2)] _ [— = tarccos (1—2y1/&) for L >w
[ 98, ]z,:o - {—1 for & < 1 (225)

In the variables x, y, z,

1 § o—Bx—E) {[a%* (AE, AV M? 1y, )\VM2—1z)] .
AV 1 ) 3% z=0

¢, y, 0)=
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g ——
—{ [P e VIR Iy VARSI | g Y B e ds |
Q

do
(2.26)
Here -
[3%'()\& AN VIR 1y, NV M 1) J B
43 —o
_ {— An—1arc cos (1 —2 (/&) VM —1, for £> me (227)
- for &< VM —1y

Finally, using (2.3), the perturbation velocity potential ¢ for points

on the wing surface may be represented as follows:

(2.22);

x
;’;at S e+BE J[a‘-[-‘o* (ME, A Vﬂfz—— 1y, A ]//l]'l—'l Z)] .
I V-JWZ —1 ’ ‘ R 0% 7=0

3

ole 5. 0, 1) =
0

L T e VI T ] 4y e

A
as
©

Here the partial derivatives in square brackets are given by expression

(2.27).

The pressure acting on the wing, according to (1.5) and (2.7), will be
(2.29)

Pl i 0. 1) = pr— = Zoelies (v 4 ) g, g, 0) + ST

Using (2.29) it is possible to obtain an expression for the lift P of
the wing. Let ! be the wing span, in the y direction, and h the dimension

in the x direction. Then

t h roal M

P::S Spm;y,ﬂ,ndxdy;aki Xpud,%,O,ﬂdxﬁy1=
0 0 ® ([
z I a , 1, Y1,
=l (o (v ) Gy 0) o D dady,
Q 0

(b = VIF=)
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After some not too difficult transformations, we obtain

ul 2h

p_—”%goﬁ@“[ S S e (zy, Yy, 0)dx,dy; +

A
0 0
900l Aul Ah 2
+ p;\op et S R a—a[e“x!c‘b(:pl, y1, 0)ldxdy,
[E]

or, putting in expressions (2.24),

AMox Al S (&
2p0 C U b o* (61, Y1, 21)
p=fpen § Von | {[Rie |~
ASu2 0t 2:=0
0 0 0

Og/').n:

d » Y1,
(C T P

Ah Xy Aunl

el gt {0 on | f[20 L W]
A2p? ) oy ; 0% 2,=0

[

a * y s 4
[l v L) (VBT op?)] douf dydisda,

OQ/?L“

Working out the inner integral gives

Al 1
. ao* (1, Y1, 31) 9o (01, Y1, 21)
Ky = g {[_ 9% JZI:O—S[ 4oy leo X
) 0

Aul
¢ [ 0% (E1, ¥,
L, (VBT ey, = | [P ay, —

0
aul

i{% LT | [ ] )
Q
25

0

Using (2.25) it is easy to obtain
Al €y
i aq)f)' (Elf Y1, zl) . ___3 — y_l_ —_
§ = Loy = w§ arccos (1 —28-) dys
ul—%,
— | dn=—r+u
&

Then

1483

(2.30)
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Es
Ky=—hl+8& + )‘PJS 3%1[10 (VEIZ_'Glz)] doy —

0

o Uy (VBT o) doy = — bl () +

DN

21

+\ T (V&F o) doy = —hal, ) + shy

0

Putting this result for K, into (2.30) and changing to the variables
(x, y, z, t) we obtain the expression for the lift (in absolute magnitude)

k

h
_ 2p(U4al)l (g 2po0al b o
P = V=T S eI (1) dx_VMZ—:ie t Sxeﬁ I,(\z)dx —
0
at h h
— 20000 (U + ah) — S ¢8% sh Azdz - 200 ae Sxe.sx <h hzdx (2.31)
o 0

3. In the case of a wing of infinite span, whose angle of attack
changes exponentially with time, the perturbation velocity potential to
be found is ¢lx, z, t); evidently it is necessary to determine a function
¥lx,, z,) satisfying the equation

M A =0 (3.4)

6112 axl?'

and the following conditions. On the profile [0, h1]
9% =1 -
{E]Fo T aVeE—1¢ (3-2)

In the region where the fluid is not disturbed, i.e. upstream of the
leading edge x, = 0, the function ¢ and its derivatives are equal to zero

l/}: 0 (33)

Equation (3.1) is in the form of the telegraph equation, well-known
in mathematical physics, and easily solved by means of Riemann functions.
But for consistency of presentation, we shall use operational methods to

solve (3.1), Let

F(p,z)=0p 3 ey (xy, Z1) day (3.4)

0

be the transform of 1//(x1, zl); then the function F(p, 21) may be deter-
mined from an ordinary differential equation
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a2F ., e
whose general solution has the form
F(p, 2;) = Ae V712 4 BeVP=11 (3.6)

Here A and B are constants, which depend on the parameter p.

Using conditions (3.2) and (3.3), we find

1 p 1
A= — — S— — 3.7
MVME I pv VPE=1" B=0 (

Thus we obtain for F(p, Zl) the expression

F , 2y) = — L L _1 —Vi=1z4
(p, 21) N Ta i I Vi et L (3.8)

The following relation is known (4):

(3.9)

IO for { < =

P VTS
=V (p+a)(p+b) —
' _'—)]e\p(—————t[ L—£Vﬁ—t)fort>1

Votaptn©

From the inversion theorem, and using relation (3.9), we determine the
function ¢(x,, z,) for points on the profile, i.e., for z, = 0

Xy
1 .
——— —v(x1—3I1)
)\VW_—T§ € IO (El) dEl
Changing back to the variables x, z, and in view of (2.3), we obtain

for the perturbation velocity potential on points of the wing, the follow-
1ng expression:

by, 0)) = —

x
xf

P 00 = = g | L 090 (3.10)

It is easy to see that exactly the same expression may be obtained
from equation (2.28) for the perturbation velocity potential of a wing
of finite span, by putting

= —2

=0

[ ot (NE, ANV ME— 1y, NV M2 — 1z]
0% 2

The pressure on the wing of infinite span, and angle of attack varying
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exponentially with time, 1is
pe, 0, )= pr—p~ = 2o [ 250 22 0 0]
X

ol o eyde — Y 00 ol
2?00[ Vﬂﬂ—ie §eclo(lx5)dc VM‘-’—iC ax§e IO(E)dg] (3.11)

The 1ift of a wing section with chord h 1s

I

p— U tah) 1653‘]0(19:)6{.7:—— Zboat e“’ -xef’xl(,()\a)r/.r (3.12%
LV ME—1 S >

0

This is in complete agreement with expression (2.31) found earlier for
the lift of a wing of finite span, from which (3.12) may be obtained by
going over to the limit I » .

4. We return to the problem of determining the perturbation velocity
potential ¢(x, y, z, t) as a solution of equation (1.1) with boundary
conditions (1.2)-(1.4), i.e. to the case for which the normal velocity
component on the surface of a rectangular wing changes with time in an
arbitrary manner:

[g_‘z‘i]zzozf(z) (— 00 <t < 0) (4.1)

A case of interest is a gust having the following form:

_ . f0r~—00\\/\t<\‘—z0 42
(2] =r0={] o _nei<o (4.2)

To determine the perturbation velocity potential Hx, y, z, t) we
shall make use of the solution already obtained (2.28).

We expand the function f(t) in powers of e' (in certain cases it 1is
convenient to make the expansion in terms of %! where a 1s an arbitrary
parameter)

N
/() = lim 2 arer! (— oo <1 <L0) {4 3)
N-»o0

We shall look for a solution of equation (1.1) in the fomm

N

e(z, y, z, t)=lim Z a,pr (x, Y, 2, ) (4.4)
N-»c0 —o

where ¢ (x, y, z, t) is the particular solution (2.28) of equation (1.1)
which was obtained earlier.
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We introduce a change of variable. Let r = e®, Then

N
JO)=f) =1lim B ar  0<a< (4.5)

r=0

Then put 7 = 1/2(g + 1), or g =27 — 1. It can be seen that for f,(¢)
we obtailn

N
L) =glg) =lim ¥ &'y (—1<a<D (4.6

T =0

where g(q) is function which is given on the interval [-1,+ 1], on which
it has a finite number of points of discontinuity of first order; it
satisfies the conditions for an expansion in series of legendre poly-
nomials [ 5 1. We represent g(q) in a series of normalized Legendre poly-

nomials:
N

gg)=1im > (n 1 ) B.Pu(g) (4.7)
n==u
Here
p 1 E(n_<2, (— ¥ (2n — 2k)!
» (0= 5 kéo R —hl =zl 4 (4.8)

is the orthogonal Legendre polynomial of nth order. The coefficients of
the expansion are

1t 1
B~ \ (n -5 Pnl9)g(g)dg (4.9)

—1

It may be seen that the series (4.7) for the function g(q) may be
written as follows:

N n
g(q) == }\}Eloo 2 anPn (Q): Pn ((I) = 2 bnl.'qk (410)

n=0Q k=0

To determine the coefficients b,, we shall make some transformations
in the well known representation (4.8) of the Legendre polynomials. We
put 2k = m; then

(4.11)

n—m

1 < =)™ T (27 —m + 1)
P l9) T on Z (=12 2 m m
~ me=o I‘<-2—+1>I‘<n-——z—+1>r(n—m+1)

Now let n — m = k in expression (4.11). We obtain a representation of the
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Legendre polynomial of nth order in the form of a series in increasing
powers of g,

(4.12)
n k .
1 S (=) 1 Cn+k+1)
Pn(q) b—_n ¢ n—k 1e- k
z 2 F( +1) ( thoL )F(k»{—’l} 9
Equating (4.10) and (4.12), we find
) __(__ 1)"_' Y T (n+k+1)
2 r(”—;’i+1)1‘('—‘i+1)r(/c+1)
Thus

gq) = hm 2.' a.Pn(q) = 11m Z Z baxg"* = lim

N
a-b. !
N—>OOZ & “q’
n“O k=0 1==0
Here

irb/'?«

—H

ar = (k+5) | Pu@e(@)dq
~1
h—l ) .
1 S—(— D" 41 P+ 1+ 1
b“ Z‘_k(___1)z (__; ~ (k + 1+ )

1 (’t_;_l+1) . (/*_; %1)1‘(1+ 0 (4.133)

Finally, the function g(q) may be expressed as follows

g ((I) == “ln E all(]l

where

(4.14)
N >0 1
N 41 k—1 k—1
¢ S (=141
o =2 L\ Pe(@elgrdg| (=1 P 5
ot [( ) 2k § ]
T(k+14+1) i
X T (/c-2—l n 1) ("H—i—i)l“(l 1 (4.1)
Let us return to the variable r

. It is clear that
1

:(21—1)12102;} ,(l ),( )P (21)P

Then we can write
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N 1
. —pi-r
glg) = hm Z‘ a'qgt=lim D) a) D) jv'(l) ¥ (2)

N—-)OOl =0 p

= lim Zal }_, alp-rp—llm 2 2 as'a" et

N—oo 1.9 =0 y—=0s=r

where
(— 1)s—"st 2"

@er = 7 (s—r)!

Therefore, in view of (4.6),

(4.16)

N N N

. N 1 St
H@=lm SIS S (k4 5) 5 g Pe(9) g(@dg(—1)? ——5——x

r=0 s=r k=s e

T(k+s+1) (— 1T (s +1) 2r
xr(’%f+1) ("+’+1)r(sr1,] Tis—r+1) }P(’-H)Tr

and finally, for f(f)= [g_q:] ., we obtain in accordance with (4.5)

=1 et 447
7@ Ng{;Zae (4.17)
where N
N _N 1 k—s k—s
— (—1 1
a=R[3(k+ Dz \ng(q)dq(—wu—z—ix
Suep fews
T (k+s+’1) (—1)57TT (s + 1)27 418
X FEEr (4 grery Jre—rrorern O

Using (4.4), the perturbation velocity potential is

(P(.’E, yro) t) = (/il‘))
0y (NrE, Ayr VM2 — 1y, \yr V MP— 1 2) }
= BirE _
i B ] e
A, (Mrs, MrVIMEI— 1y, hr VMP—1r) |
—S[“"‘("“ VL W VIR 1| el thar V= ol as

Here

M o1 N 1 1
Bi=—2w—1  MT U
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The 1ift of a wing with finite span ! and chord h is

I l

2P .
—]/_]I-JTI ]\lllm 2, ar [ —[“ rh e” &6 lrxl )\17'35) d.Z —_
r=0 0

h
rt h

— lret g xePr>] (N rx)dr — Y M*—1a (U + rh) —er— g ePr® sh hyrx de -
0 0
h

VI Tger che sh Mmdx] (4.20)

0

P =

For a wing section (case of a wing of infinite span),

’

2(2,0,0) = — s Y z aret Sc@ 21, () 2 (4.21)

/.1 - h )

VM"__I mlgga 2 a; [(L rh) e"‘ger’*ﬂ“’lo()\lrx) (lx;re”& x> (hyra) dx.
r=0 ] 0

(4.22)

It must be noted that with increasing r the coefficients a_ of some
functions will tend to infinitely large values. However any function may
be approximated by means of a finite number of Legendre polynomials to
any degree of accuracy. The derivation of aerodynamic characteristics in
such cases is to be regarded as a certain asymptotic process.

In the case of the gust (4.2), the function f(t) is discontinuous and,
therefore, the coefficients a, » « as r » . In this case the function
f(t) may be approximately represented in the form

N
j )= ) &e
r=0

A satisfactory approximation is obtained for N ~ 15. From (4.19) and
(4.20), approximate values of the aerodynamic characteristics are ob-
tained,
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