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We demonstrate some results in the investigation of the unsteady motion 

of a thin rigid wing of finite aspect ratio and rectangular planform in 

supersonic flow of arbitrary velocity variation; this includes passage 

through a gust or a shock front. The problem is linearized. In the first 

part of the paper one finds the solution of the problem for the case of 
a change in wing angle of attack according to the law ea t( --m < t < 0): 

in the second part, the obtained particular solution is used to examine 

cases where the angle of attack of the wing changes arbitrarily with time. 

Problems of this sort were examined by Krassitshchikova [l 1. In the pre- 

sent paper, a closed form solution is obtained for the case of a wing of 

rectangular planform with account of edge effects. 

1. We shall consider the straight-line forward motion of a thin, rigid 

wing of finite span and rectangular planform, moving in an infinite region 

of fluid and at rest at infinity. Superimposed on this basic motion, with 

constant supersonic velocity II, are additional small nonstationary motions. 

We shall investigate the perturbed motion in a moving system of co- 

ordinates fixed to the wing and moving with the velocity U. The x-axis is 

in the direction opposite to the motion, the y-axis is in the spanwise 

direction, and the z-axis is upward (see figure). 

We shall assume that the nonstationary motion of 

the wing produces small disturbances in the flow and 

that the perturbed flow has a potential. Then, as is 

known, the perturbation velocity potential +(n, y, z,t) 

satisfies a linear differential equation which, in the 

moving system of coordinates, has the form: 

(1.1) 
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where a = \/ (&J/C+) is the speed of sound in the undisturbed fluid. 

The field is disturbed in that part of the field which is bounded by 

the envelope of Mach cones with vertices on the wing contour. Outside 

this region the velocity potential and its derivatives are equal to zero: 

+=o (1.2) 

On the wing surface L the boundary condition is satisfied: 

Z=/(t) for z=o (1.3) 

where f(t) is an arbitrary function of its argument which is given on the 

semi-infinite interval (-00, 01, with a finite number of points of dis- 

continuity of first order, and sufficiently smooth at --m. 

Everywhere in the x, y plane where the fluid is disturbed, but outside 

the plane of the wing and the vortex sheet, 

qb=o (1.4) 

'lhe potential $I is an odd function with respect to the z-coordinate, 

9(x, y, -z, t) = c#dx, y, z, t); therefore the solution of the problem need 

be investigated in only the upper half-region. 

Thus, it is necessary to determine a function C#I(X, y, z, t) which 

satisfies equation (l.l), conditions (1.2), (1.3), (1.4) and is equal to 

zero at infinity, together with its derivatives. 

'Ihe pressure on the wing is determined from the equation 

2. We shall find a particular solution of equation (1.1) for the case 

where the velocity component normal to the wing changes with time accord- 

ing to the relation 

II 1 a’p = eat 
dz g=o (--o~~<ttO, a>O) (2.1) 

Letting M = U/a denote the Mach number of the basic flow, we rewrite 

equation (1.1) in the following form: 

We shall look for a perturbation velocity potential #z, y, z, t) 

which is a solution of equation (2.1), in the form 

(p(z, y, 2, t) = e’xtfP9(z, y, 4 (2.3) 
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For the function I!&, y, z) we obtain the equation 

+ [-((ilr2-l)+2A!r; &I+ = 0 

Making use of the arbitrary p, we require that 

-2((M2-l)p--2M$=O, or ~=----&&--~ 

EIquation (2.4) is transformed to 

I(2.4) 

(2.5) 

i 
--+++$)-$J+h+O (hs=$ (Mall)z) 
W-1 ay2 (2.6) 

Making the usual change of variables, 

xr = hx, &=hyvYIP-l, z,=hzJAIP-1 (2.7) 

equation (2.6) takes the form 

$+S-&+=o (2.8) 

On the basis of (1.2), (1.3) and (l.4) we obtain the following conditions 

for $(x1, yl, zI): 

in the undisturbed field, the function $ and its derivatives are zero: 

on the wing surface L, 

+=o (2.9) 

all) 1 
az,= ___ AJfMZ- 1 

e--vxl for zr = 0 (be;) (2.10) 

in the plane z1 = 0, outside the plane of the wing and the vortex 

sheet, 

s/l= 0 (2.11) 

Let us consider an auxiliary problem. Let (J* (n,, yl, z,) satisfy the 

equation 

(2.12) 

and the conditions 

a+ 
- = 1'1(%) 
8% 

on L.1 for q= 0 (2.13) 

and conditions analogous to (2.9) and (2.11) outside L,. 
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To investigate this auxiliary problem, we shall start from the ex- 

pression for a function %*(x1, yl, z,) &ich, like the function $*(x1, 

y1j zI) satisfies the differential equation (2.12) and conditions ana- 

logous to (2.9) and (2.11) outside L,; however, the condition (2.13) on 

15, for z1 = 0 will be 

(2.14) 

The expression for the function $0*(x1, yl, z,) was given by Busemann 

[2 I. The value of its derivative with respect to x1, for z1 = 0, is 

[ 
qJO’~~l, Yl, 21) 

3x1 1 { 
= - 7r1arc cos (I-2yl;xl) for q > y1 

z,=0 -1 for 23 < y1 
(2.15) 

A relation has been established between the functions !11g*(z,, yl, zl) 
and $*(x1, yr, 2,) c3 I. 

A 

(9 21, Yl, 21) = \L 2* [(Xl - El), Ylt 211 
. 

3% I 4Jo’ (51, Yl, 21) &, = 

z,=o Xl 

At 

for an arbitrary point A(xl, yl, z,) of the disturbed region; here the 

point A lies on the envelope of Mach cones. 

For points on the wing, 

The expressions (2.16) mak e it possible to find a connection between the 

functions Ii/*(x,, yl, z,) and $(x1, yl, z,) in the plane z1 = 0, using 

operational methods. Let 
a,, 

F’ (P, Yl, 21) = p s f-qJ* (21, y1, zl) dx, (2.17) 

0 

be the transforms of the functions $(x1, yl, z,) and $*(x1, yl, z,). 

The functions F(p, yl, z,) and F*(p, yl, z,) satisfy the partial diffe- 

rential equations 
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~+~-(P2-1)F=0, G+G_p2F*= 0 
(2.18) 

Evidently it is possible to write the following relation between 

F(P# YIJ 2& and F*(p, yl, zl): 
(2.19) 

F(YI, 21, P) = F'(Y,, 217 ~/p'-l), F(y,, 0, p) = F'(y,, 0, I/p"--) 

We shall use the expression (2.16) for the function v(xl, yl, 0): 

we define 

From the inversion theorem, we obtain for F*(y,, 0, p): 

F’(Y~, 0, p) = ; [~K(;;Izl’ P)]r,;o T (yl, 0, p) 

Making use of (2.19) it is possible to 

0, P), namely 

obtain an expression for F(y,, 

F(y,, 0, p) == F’(yl, 0, 
-- 

$+I"-1) = 

From (2.19) 
~ - 

aF* (~1, 21, v/p’ - 1) - 
az1 I F aF (~1, zlr P) = 

Z,==O az1 1 z,=o 

Therefore 

F (P, ~1, @) = ,&j C 

aF (YII,ZI~ I’) ]z,=o -- 
T (~1, (Al/p2 - 1) 

lhe to (2.10), 

r 
aF (?A, 21, P) 1 P I az, 1 *,=o =hl/MZ-lp+v 
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and thus the expression for representing the required function +‘J(x~,Y~,O) 

finally has the following form: 

The function +(x1, yl, 0) can be constructed by proceeding from the 

relation (4) 

Here I,(r) is the first order Bessel function of imaginary argument. 

Using the inversion theorem and relation (2.22), we obtain for $(x1, 

yl, 0) the following: 

(2.23) 

Introducing a new variable u = \/ (E1* - tz2) and applying the well 

known relation dl,(z)/dz = I1(zj to the function 11\/(t,_2 - ol'), we 

write the inner integral in (2!23) in the form 

'Ihen we obtain for $(x1, yl, 0) the fonn 

51 
a+,* (01, Y17 21) - 

1 
* =. & 110 (VE12 - 012)1 d%} a1 

a01 t 

(2.24) 

Here 

[ 
a+o* (517 Y19 21) - 77larr cos(1--2yr/&) for El> yr 

ai& lz*Eo = {-I for El< yr 
(2.25) 

In the variables x, y, z, 

+ @, y, 0) = -.L- 
hvM2-1 

x 

s +c--E) 

0 

-- 
&jo* (Xc, A v-M2 - ly, h JfMz- iz) 1 - x *=0 
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5 

- 
s 
0 

Here 

(2.26) 

-- 
atJ~~‘(hE, A l/M2-- ly, A .r/MB - lz) = 

aE I ,?=” 

- Ax-1 arc cos (I-2 (y/F)) 1/M2 - 1, for 5. > f/M”- ly = (2.27) 
--h for 4 < 1/M2- ly 

Finally, using (2.3), the perturbation velocity potential $ for points 

on the wing surface may be represented as follows: 
(2.2b} 

Here the partial derivatives in square brackets are given by expression 

(2.27). 

‘Ihe pressure acting on the wing, according to (1.5) and (2.7), will be 

(2.29) 

Using (2.29) it is possible to obtain an expression for the lift P of 

the wing. Let 1 be the wing span, in the y direction, and h the dimension 

in the x direction. ‘Ihen 
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After some not too difficult transformations, we obtain 

or, putting in expressions (2.241, 

E’ a+,* ( Sl 01, y1, 21) - 
301 3, z _~o & [IO 04’- ,%“)I do,} &/,dEldXl (2.30) 

0 

Working out the inner integral gives 

Using (2.25) it is easy to obtain 

w et - a+o* (El, Yl. Zl) SI 
0 

xl I z*=o 
dyl=-+\ arccos (I -22)dyl- 

0 

l&en 
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+ T Io(I/E12 - a12)dal = - ipUg -k sh Ei 

Rutting this result for K, into (2.30) and changing to the variables 

(X8 y, 2, t) we obtain the expression for the lift (in absolute magnitude) 

p = ~PCO(~ + ah) 1 ,af ‘: 
J~MZ - 1 1 &I, (lx) dx - 

0 

- 2pw a (U + ah) $- [ 19~ sh hxdx + 2pm aeat 
h 

1 xepX sh hxdx (2.31) 

0 0 

h 

---==-P~ ' xefirI,(hx) dx - 2pcdd 
1/M” -3 I 

0 

3. In the case of a wing of infinite span, whose angle of attack 

changes exponentially with time, the perturbation velocity potential to 

be found is 4(x, z, t); evidently it is necessary to determine a function 

+(X1, z,) satisfying the equation 

and the following conditions. On the profile LO, hIl 

(3.1) 

(3.2) 

In the region where the fluid is not disturbed, i.e. upstream of the 

leading edge x1 = 0, the function IJ and its derivatives are equal to zero 

1/J = 0 (3.3) 

Equation (3.1) is in the form of the telegraph equation, well-known 

in mathematical physics, and easily solved by means of Riemann functions. 

Rut for consistency of presentation, we shall use operational methods to 

solve (3.1). Let 

F (p, q) _-- p ~c-P1+(x lr 0x1 (3.4) 

0 

be the transform of $(x1, zl); then the function F(p, zl) may be deter- 

mined from an ordinary differential equation 
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d2F 
tlzl” - (p2 - '1) F = 0 

whose general solution has the form 

F(p, zl)= A+‘?=, + &f~J-li 

Here A and B are constants, which depend on the parameter p. 

Using conditions (3.2) and (3.3), we find 

(3.5) 

(3.6) 

(3.7) 

Thus we obtain for F(p, zl) the expression 

F (P, 4 = - ’ P 1 
- ~.- e-IfGzl 

). ift/AP - 1 p + v ) pz - 1 
(3.8) 

The following relation is known (4): 

for [ < : 

for I >-r 

From the inversion theorem, and using relation (3.9), we determine the 

function $(x1, z,) for points on the profile, i.e., for z1 = 0 

Changing back to the variables x, z, and in view of (2.3), we obtain 

for the perturbation velocity potential on points of the wing, the follow- 

ing expression: 

(3 IO) 

It is easy to see that exactly the same expression may be obtained 

from equation (2.28) f or the perturbation velocity potential of a wing 

of finite span, by putting 

[ 

a+,* (A[, A l/w - 1 y, A i/M” - lz 

I - 
_- 

% 
h 

z-0 

'Ihe pressure on the wing of infinite span, and angle of attack varying 
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exponentially with time, is 

The lift of a wing section with chord h is 

This is in complete agreement with expression (2.31) found earlier for 

the lift of a wing of finite span, from which (3.12) may be obtained by 

gbing over to the limit 1 -+ -. 

4. We return to the problem of determining the perturbation velocity 

potential 4(x, y, 2, t) as a solution of equation (1.1) with boundary 

conditions (1.2)-(1.4), i.e. to the case for which the normal velocity 

component on the surface of a rectangular wing changes with time in an 

arbitrary manner: 

1 1 a(p 
a.2 z=o 

z/(l) (--<H30) 

A case of interest is a gust having the following form: 

a9 
I I as 

z=O=J(l)={; for --Gtt-to 

for -to,ct<O 

To determine the perturbation velocity potential $(x, y, z, t) we 
shall make use of the solution already oLtained (2.28). 

(4.1) 

(4.2) 

We expand the function f( t ) in powers of et (in certain cases it is 

convenient to make the expansion in terms of eat, where a is an arbitrary 

parameter) 

/ (t) = ii 2 u,ept (-cQ<t<O) (4 3) 

r---O 

We shall look for a solution of equation (1.1) in the form 

(4.4) 

where $r(n, y, z, t ) is the particular solution (2.28) of equation (1.1) 

which was obtained earlier. 
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We introduce a change 

a wing with rectangular planform 

of variable. Let 7 = et. Then 

iv 
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(4.5) 

Then put T = 1/2(q + l), or q = 27 - 1. It can be seen that for fl(t) 

we obtain 

fl(4 = g (q) = ;z,_ s, ur’q (- 1 d ‘7 < 1) 
- r-0 

(4.6; 

where g(v) is function which is given on the interval L-l,+ 11, on which 

it has a finite number of points of discontinuity of first order; it 

satisfies the conditions for an expansion in series of Legendre poly- 

nomials [ 5 1. We represent g(q) in a series of normalized Legendre poly- 

nomials: 

Here 

p, ($ = $ E($z’ (- 1)” (2n - 2k)! 

k! (n - k)! (n -2/C)! 
ql-2k 

li=o 

(4 7’) 

(4.8) 

is the orthogonal Legendre polynomial of nth order. 'Ihe coefficients of 
the expansion are 

-1;l I 

&L = \ (n + ;)” Pn (Q) g (4 dq 
21 

(4.9) 

It may be seen that the series (4.7) for the function g(q) may be 
written as follows: 

To determine the coefficients b,, we shall make some transformations 
in the well known representation (4.8) of the Legendre polynomials. We 

put 2k= m; then 

(4.11) 

Now let n - m = k in expression (4.11). W e obtain a representation of the 
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Legendre polynomial of nth order in the form of a series in increasing 

powers of a, 

Equating (4.10) and (4.12), we find 

(4.12) 

l&h. = -$ (- 1) 
yfi ( Ij”-k + 1 r’(n+k+l) 

2 r ($ + 1) I’ (‘5 +- 1) I- (Ic + 1) 

Here 

-1 

I‘ (k $- 1 _t 1) __ ~__.____ 

I‘ (y + 1) I‘ (‘$ -+ 1) I‘ (I $ 1 I 

Finally, the function g(q) may be expressed as follows: 

where 

(4.1 ?I) 

(4. 14) 

Let us return to the variable T. It is clear that 

Q! = (27 _ I)1 c +J _.1!_ (_ Ijl-_P(2*)P 

p=. P! (1 -P)! 

Then we can write 
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where 

aMsr = 
(- I)"-rps! 2’ 

r! (s - r)! 

Therefore, in view of (4.6), 
(4.16) 

m=;m_i: &- i(k+;)$J Pr(QJg(C7)@(--1) 2 
k-r(_Qk + 1 x 

2 
r=O S=P k=s -1 

r (k +s+ 1) (- I)+rr (s + 1) 2r 

’ I? (k$ + 1) r (y + 1) r (S -+ lj 
] r(~--++) )r(r+~)~’ 

and finally, for we obtain in accordance with (4.5) 

where 

a,= i[i (k+ ;&f'pk(q)g(g)&&' (+"21+1 x 

B-P k-8 -1 

r (k+s+l) 

x r (k++l)r (k++l)r(S+i) 3 

(--1)8-T (S + 1)2’ 

rb--++n +i) 

Using (4.41, the perturbation velocity potential is 

cp(z, Y,O, t) = 
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'lhe lift of a wing with finite span 1 and chord h is 

- lrerf 1 xe~~PxIO(hl rx) dx - I/mu (U + rh) $- \ ePlrx sh h,rx dx _t 
0 0 

h 
+ 1/M2 - laert 

s 
x8lr.z sh A,rxdx 

I 
(4.20) 

0 

For a wing section (case of a wing of infinite span), 

rp(x, 0, t) = 

2P, p=--- 
JfM” -- I,':! p_” 

’ ilzr 

s / 

1 
lim i a& \ 

- I.f@---1 N-,a, ~=” 
@lrElo(iL1r5) dz (4.21) 

” 

[(C + r12) evt i 

h 

eP11’x Lo( )Llrx) c1.r: - rerl 
c 

xdQslg (&rx) dx 
I 

0 ;I 
(4.22) 

It must he noted that with increasing r the coefficients ar of some 

functions will tend to infinitely large values. However any function may 

be approximated by means of a finite number of Legendre polynomials to 

any degree of accuracy. The d erivation of aerodynamic characteristics in 

such cases is to be regarded as a certain asymptotic process. 

In the case of the gust (4.2), the function f(t) is discontinuous and, 

therefore, the coefficients ar 4 00 as r + m. In this case the function 

f(t) may be approximately represented in the form 
N 

A satisfactory approximation is obtained for N = 15. From (4.19) and 

(4.20), approximate values of the aerodynamic characteristics are ob- 

tained. 
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